BY206GP THRU BY207GP

MINIATURE GLASS PASSIVATED JUNCTION FAST **SWITCHING RECTIFIER**

Voltage - 350 to 600 Volts Current - 0.4 Amperes

FEATURES

Dimensions in inches and (millimeters)

Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

- High temperature metallurgically bonded constructed rectifiers
- For use in high frequency rectifier circuits
- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Fast switching for high efficiency
- Glass passivated cavity-free junction in D0-41 package
- ◆ 0.4 Ampere operation at T_A = 55°C with no thermal runaway
- Typical In less than 1 μ A
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic over glass Terminais: Axial leads, solderable per

MIL-STD-202, Method 208

Mounting Position: Any Weight: 0.012 ounce, .3 gram

Polarity: Color band denotes cathode

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	- BY206GP	BY207GP	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	350	600	Volts
Maximum RMS Voltage	VRMS	210	350	Volts
Maximum DC Blocking Voltage	VDC	300	500	Volts
Maximum Average Forward Rectified Current .375*, (9.5mm) Lead Lengths at T _A = 55*C	I(AV)	0.4		Amps
Peak Forward Surge Current 10ms single half sine-wave superimposed on rated load at T _A = 25°C	lfsm	15		Amps
Maximum Instantaneous Forward Voltage at 2.0A TJ = 150°C	VF	1.5		Volts
Maximum Full Load Reverse Current TA=55°C Full Cycle AVerage at TJ = 125°C	I _R	2.0 200	2.0 125	μА
Maximum Reverse Recovery Time (Note 1)	TRR	1.0		μs
Typical Junction Capacitance (Note 2)	CJ	15.0		pf
Typical Thermal Resistance (Note 3)	ReJA	45.0		.cw
Operating and Storage Temperature Range	TJ,Tstg	-65 to +175		.c

- Reverse Recovery Test Conditions: IF = 0.4A, VR = 50V di/dt = 0.4/US.
 Measured at 1 MHz and applied reverse voltage of 4.0 Vpc.
 Thermal Resistance from Junction to Ambient at .375* (9.5mm) Lead Lengths, P.C. Board Mounted.

RATINGS AND CHARACTERISTIC CURVES BY206GP THRU BY207GP

FIG. 3 — MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT

FIG. 5 - REVERSE RECOVERY TIME CHARACTERISTIC

FIG. 2 — TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

FIG. 4 --- TYPICAL JUNCTION CAPACITANCE

FIG. 6 - SUPERECTIFIER

